Recombinant Mouse GFRA2/GFRα2/GDNFRB Protein (His Tag) (PKSM040829)

For research use only.
Synonyms | GFR alpha 2, GFR alpha-2, Gfra2 |
Species | Mouse |
Expression Host | HEK293 Cells |
Sequence | Met 1-Ser 441 |
Accession | NP_032141.2 |
Calculated Molecular Weight | 48.5 kDa |
Observed Molecular Weight | 75 kDa |
Tag | C-His |
Bio-activity | Not validated for activity |
Purity | > 85 % as determined by reducing SDS-PAGE. |
Endotoxin | < 1.0 EU per μg of the protein as determined by the LAL method. |
Storage | Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80℃. Reconstituted protein solution can be stored at 4-8℃ for 2-7 days. Aliquots of reconstituted samples are stable at < -20℃ for 3 months. |
Shipping | This product is provided as lyophilized powder which is shipped with ice packs. |
Formulation |
Lyophilized from sterile PBS, pH 7.4 Normally 5% - 8% trehalose, mannitol and 0.01% Tween 80 are added as protectants before lyophilization. Please refer to the specific buffer information in the printed manual. |
Reconstitution | Please refer to the printed manual for detailed information. |
Background | GFRA2 is a member of the GDNF receptor family. It is a glycosylphosphatidylinositol(GPI)-linked cell surface receptor for both GDNF and NTN, and mediates activation of the RET tyrosine kinase receptor. GFRA2 is a potent survival factor for central and peripheral neurons, and is essential for the development of kidneys and the enteric nervous system. Glial cell line-derived neurotrophic factor (GDNF) and neurturin (NTN) are its binding ligand which are two structurally related, potent neurotrophic factors that play key roles in the control of neuron survival and differentiation. GDNF promotes the formation of a physical complex between GFRA/GDNFRa and the orphan tyrosin kinase receptor Ret, thereby inducing its tyrosine phosphorylation. The RET is a receptor tyrosine kinase representing the signal-transducing molecule of a multisubunit surface receptor complex for the GDNF, in which GFRA/GDNFRa acts as the ligand-binding component. Experiments have improved that GFRA2 genetic variants and age may play a role in Tardive dyskinesia (TD) susceptibility, but further work is required to confirm these findings. |
Other Clones
{{antibodyDetailsPage.numTotal}} Results
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
Other Formats
{{formatDetailsPage.numTotal}} Results
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
-
IF:{{item.impact}}
Journal:{{item.journal}} ({{item.year}})
DOI:{{item.doi}}Reactivity:{{item.species}}
Sample Type:{{item.organization}}
-
Q{{(FAQpage.currentPage - 1)*pageSize+index+1}}:{{item.name}}