Recombinant Human HIF-1α Protein (Sumo Tag) (PDEH101145)

For research use only.
Species | Human |
Expression Host | E.coli |
Sequence | Arg575-Asn826 |
Accession | Q16665 |
Calculated Molecular Weight | 40.6 kDa |
Observed Molecular Weight | 50 kDa |
Tag | N-Sumo |
Bio-activity | Not validated for activity |
Purity | > 90% as determined by reducing SDS-PAGE. |
Endotoxin | < 10 EU/mg of the protein as determined by the LAL method |
Storage | Generally, lyophilized proteins are stable for up to 12 months when stored at -20 to -80℃. Reconstituted protein solution can be stored at 4-8℃ for 2-7 days. Aliquots of reconstituted samples are stable at < -20℃ for 3 months. |
Shipping | This product is provided as lyophilized powder which is shipped with ice packs. |
Formulation | Lyophilized from a 0.2 μm filtered solution in PBS with 5% Trehalose and 5% Mannitol. |
Reconstitution | It is recommended that sterile water be added to the vial to prepare a stock solution of 0.5 mg/mL. Concentration is measured by UV-Vis. |
Background | HIF-1 alpha, also known as HIF1A, contains 1 basic helix-loop-helix (bHLH) domain, 1 PAC (PAS-associated C-terminal) domain, and 2 PAS (PER-ARNT-SIM) domains. It is one of the two subunits of Hypoxia-inducible factor-1 (HIF1). HIF1 is a transcription factor found in mammalian cells cultured under reduced oxygen tension that plays an essential role in cellular and systemic homeostatic responses to hypoxia. HIF1 is a heterodimer composed of an alpha subunit and a beta subunit. The beta subunit has been identified as the aryl hydrocarbon receptor nuclear translocator (ARNT). HIF-1 alpha is expressed in most tissues with the highest levels in the kidney and heart. It is overexpressed in the majority of common human cancers and their metastases, due to the presence of intratumoral hypoxia and as a result of mutations in genes encoding oncoproteins and tumor suppressors. HIF-1 alpha functions as a master transcriptional regulator of the adaptive response to hypoxia. Under hypoxic conditions, it activates the transcription of over 40 genes, including erythropoietin, glucose transporters, glycolytic enzymes, vascular endothelial growth factor, HILPDA, and other genes whose protein products increase oxygen delivery or facilitate metabolic adaptation to hypoxia. HIF1A plays an essential role in embryonic vascularization, tumor angiogenesis, and the pathophysiology of ischemic disease. HIF-1 alpha binds to core DNA sequence 5'-[AG]CGTG-3' within the hypoxia response element (HRE) of target gene promoters. Activation requires the recruitment of transcriptional coactivators such as CREBPB and EP300. |
Other Clones
{{antibodyDetailsPage.numTotal}} Results
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
Other Formats
{{formatDetailsPage.numTotal}} Results
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
-
IF:{{item.impact}}
Journal:{{item.journal}} ({{item.year}})
DOI:{{item.doi}}Reactivity:{{item.species}}
Sample Type:{{item.organization}}
-
Q{{(FAQpage.currentPage - 1)*pageSize+index+1}}:{{item.name}}