MRPS35 Polyclonal Antibody (E-AB-52862)

For research use only.
Verified Samples |
Verified Samples in WB: LoVo, K562, Jurkat, Hela Verified Samples in IHC: Human liver cancer |
Dilution | WB 1:500-1:2000, IHC 1:50-1:200 |
Isotype | IgG |
Host | Rabbit |
Reactivity | Human |
Applications | WB, IHC |
Clonality | Polyclonal |
Immunogen | Fusion protein of human MRPS35 |
Abbre | MRPS35 |
Synonyms | 28S ribosomal protein S28, 28S ribosomal protein S35, 28S ribosomal protein S35 mitochondrial precursor, DKFZp762P093, HDCMD11P, MDS023, MGC104278, Mitochondrial riboso, mitochondrial |
Swissprot | |
Calculated MW | 37 kDa |
Observed MW |
Refer to figures
The actual band is not consistent with the expectation.
Western blotting is a method for detecting a certain protein in a complex sample based on the specific binding of antigen and antibody. Different proteins can be divided into bands based on different mobility rates. The mobility is affected by many factors, which may cause the observed band size to be inconsistent with the expected size. The common factors include: 1. Post-translational modifications: For example, modifications such as glycosylation, phosphorylation, methylation, and acetylation will increase the molecular weight of the protein. 2. Splicing variants: Different expression patterns of various mRNA splicing bodies may produce proteins of different sizes. 3. Post-translational cleavage: Many proteins are first synthesized into precursor proteins and then cleaved to form active forms, such as COL1A1. 4. Relative charge: the composition of amino acids (the proportion of charged amino acids and uncharged amino acids). 5. Formation of multimers: For example, in protein dimer, strong interactions between proteins can cause the bands to be larger. However, the use of reducing conditions can usually avoid the formation of multimers. If a protein in a sample has different modified forms at the same time, multiple bands may be detected on the membrane. |
Cellular Localization | Mitochondrion. |
Concentration | 0.96 mg/mL |
Buffer | Phosphate buffered solution, pH 7.4, containing 0.05% stabilizer and 50% glycerol. |
Purification Method | Antigen affinity purification |
Research Areas | Epigenetics and Nuclear Signaling, Metabolism |
Conjugation | Unconjugated |
Storage | Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles. |
Shipping | The product is shipped with ice pack,upon receipt,store it immediately at the temperature recommended. |
background | Mammalian mitochondrial ribosomal proteins are encoded by nuclear genes and help in protein synthesis within the mitochondrion. Mitochondrial ribosomes (mitoribosomes) consist of a small 28S subunit and a large 39S subunit. They have an estimated 75% protein to rRNA composition compared to prokaryotic ribosomes, where this ratio is reversed. Another difference between mammalian mitoribosomes and prokaryotic ribosomes is that the latter contain a 5S rRNA. Among different species, the proteins comprising the mitoribosome differ greatly in sequence, and sometimes in biochemical properties, which prevents easy recognition by sequence homology. This gene encodes a 28S subunit protein that has had confusing nomenclature in the literature. Alternatively spliced transcript variants encoding different isoforms have been found for this gene. Pseudogenes corresponding to this gene are found on chromosomes 3p, 5q, and 10q. MRPS35 (Mitochondrial Ribosomal Protein S35) is a Protein Coding gene. Among its related pathways are Mitochondrial translation and Organelle biogenesis and maintenance. GO annotations related to this gene include poly(A) RNA binding and structural constituent of ribosome. |
Other Clones
{{antibodyDetailsPage.numTotal}} Results
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
Other Formats
{{formatDetailsPage.numTotal}} Results
Unconjugated
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
-
IF:{{item.impact}}
Journal:{{item.journal}} ({{item.year}})
DOI:{{item.doi}}Reactivity:{{item.species}}
Sample Type:{{item.organization}}
-
Q{{(FAQpage.currentPage - 1)*pageSize+index+1}}:{{item.name}}