COX6C Polyclonal Antibody (E-AB-17879)

For research use only.
Verified Samples |
Verified Samples in WB: HepG2, HUVEC, NIH/3T3, Human heart, Mouse heart, PC-3 Verified Samples in IHC: Human liver cancer, Human esophagus cancer |
Dilution | WB 1:500-1:2000, IHC 1:25-1:100 |
Isotype | IgG |
Host | Rabbit |
Reactivity | Human, Mouse |
Applications | WB, IHC |
Clonality | Polyclonal |
Immunogen | Synthetic peptide of human COX6C |
Abbre | COX6C |
Synonyms | COX 6C, COX6C, Cox6c, Cytochrome c oxidase polypeptide VIc, Cytochrome c oxidase subunit 6C, Cytochrome c oxidase subunit VIc preprotein, cytochrome c oxidase subunit VIc |
Swissprot | |
Calculated MW | 9 kDa |
Observed MW |
Refer to figures
The actual band is not consistent with the expectation.
Western blotting is a method for detecting a certain protein in a complex sample based on the specific binding of antigen and antibody. Different proteins can be divided into bands based on different mobility rates. The mobility is affected by many factors, which may cause the observed band size to be inconsistent with the expected size. The common factors include: 1. Post-translational modifications: For example, modifications such as glycosylation, phosphorylation, methylation, and acetylation will increase the molecular weight of the protein. 2. Splicing variants: Different expression patterns of various mRNA splicing bodies may produce proteins of different sizes. 3. Post-translational cleavage: Many proteins are first synthesized into precursor proteins and then cleaved to form active forms, such as COL1A1. 4. Relative charge: the composition of amino acids (the proportion of charged amino acids and uncharged amino acids). 5. Formation of multimers: For example, in protein dimer, strong interactions between proteins can cause the bands to be larger. However, the use of reducing conditions can usually avoid the formation of multimers. If a protein in a sample has different modified forms at the same time, multiple bands may be detected on the membrane. |
Cellular Localization | Mitochondrion inner membrane. |
Concentration | 0.7 mg/mL |
Buffer | Phosphate buffered solution, pH 7.4, containing 0.05% stabilizer and 50% glycerol. |
Purification Method | Antigen affinity purification |
Research Areas | Cancer, Metabolism, Signal Transduction, Tags and Cell Markers |
Conjugation | Unconjugated |
Storage | Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles. |
Shipping | The product is shipped with ice pack,upon receipt,store it immediately at the temperature recommended. |
background | Cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, catalyzes the electron transfer from reduced cytochrome c to oxygen. It is a heteromeric complex consisting of 3 catalytic subunits encoded by mitochondrial genes and multiple structural subunits encoded by nuclear genes. The mitochondrially-encoded subunits function in electron transfer, and the nuclear-encoded subunits may be involved in the regulation and assembly of the complex. This nuclear gene encodes subunit VIc, which has 77% amino acid sequence identity with mouse subunit VIc. This gene is up-regulated in prostate cancer cells. A pseudogene has been found on chromosomes 16p12. |
Other Clones
{{antibodyDetailsPage.numTotal}} Results
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
Other Formats
{{formatDetailsPage.numTotal}} Results
Unconjugated
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
-
IF:{{item.impact}}
Journal:{{item.journal}} ({{item.year}})
DOI:{{item.doi}}Reactivity:{{item.species}}
Sample Type:{{item.organization}}
-
Q{{(FAQpage.currentPage - 1)*pageSize+index+1}}:{{item.name}}