PLA2G16 Polyclonal Antibody (E-AB-91401)

For research use only.
Verified Samples |
Verified Samples in WB: various cell lines |
Dilution | WB 1:500-1:2000 |
Isotype | IgG |
Host | Rabbit |
Reactivity | Human |
Applications | WB |
Clonality | Polyclonal |
Immunogen | Recombinant fusion protein of human PLA2G16 |
Abbre | PLA2G16 |
Synonyms | AdPLA, H-REV107, H-REV107-1, HRASLS3, HREV107, HREV107-1, HREV107-3, HRSL3, PLA2G16 |
Swissprot | |
Calculated MW | 18 kDa |
Observed MW |
18 kDa
Western blotting is a method for detecting a certain protein in a complex sample based on the specific binding of antigen and antibody. Different proteins can be divided into bands based on different mobility rates. The mobility is affected by many factors, which may cause the observed band size to be inconsistent with the expected size. The common factors include: 1. Post-translational modifications: For example, modifications such as glycosylation, phosphorylation, methylation, and acetylation will increase the molecular weight of the protein. 2. Splicing variants: Different expression patterns of various mRNA splicing bodies may produce proteins of different sizes. 3. Post-translational cleavage: Many proteins are first synthesized into precursor proteins and then cleaved to form active forms, such as COL1A1. 4. Relative charge: the composition of amino acids (the proportion of charged amino acids and uncharged amino acids). 5. Formation of multimers: For example, in protein dimer, strong interactions between proteins can cause the bands to be larger. However, the use of reducing conditions can usually avoid the formation of multimers. If a protein in a sample has different modified forms at the same time, multiple bands may be detected on the membrane. |
Cellular Localization | Cytoplasm, cytosol, endoplasmic reticulum, lysosome, mitochondrial membrane, mitochondrion, nuclear envelope, perinuclear region of cytoplasm. |
Concentration | 1 mg/mL |
Buffer | Phosphate buffered solution, pH 7.4, containing 0.05% stabilizer and 50% glycerol. |
Purification Method | Affinity purification |
Research Areas | Cancer |
Conjugation | Unconjugated |
Storage | Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles. |
Shipping | The product is shipped with ice pack,upon receipt,store it immediately at the temperature recommended. |
background | Exhibits both phospholipase A1/2 and acyltransferase activities. Shows phospholipase A1 (PLA1 and A2 (PLA2 activity, catalyzing the calcium-independent release of fatty acids from the sn-1 or sn-2 position of glycerophospholipids. For most substrates, PLA1 activity is much higher than PLA2 activity. Shows O-acyltransferase activity,catalyzing the transfer of a fatty acyl group from glycerophospholipid to the hydroxyl group of lysophospholipid. Shows N-acyltransferase activity, catalyzing the calcium-independent transfer of a fatty acyl group at the sn-1 position of phosphatidylcholine (PC and other glycerophospholipids to the primary amine of phosphatidylethanolamine (PE, forming N-acylphosphatidylethanolamine (NAPE, which serves as precursor for N-acylethanolamines (NAEs. Exhibits high N-acyltransferase activity and low phospholipase A1/2 activity. Required for complete organelle rupture and degradation that occur during eye lens terminal differentiation, when fiber cells that compose the lens degrade all membrane-bound organelles in order to provide lens with transparency to allow the passage of light. Organelle membrane degradation is probably catalyzed by the phospholipase activity (By similarity. |
Other Clones
{{antibodyDetailsPage.numTotal}} Results
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
Other Formats
{{formatDetailsPage.numTotal}} Results
Unconjugated
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
-
IF:{{item.impact}}
Journal:{{item.journal}} ({{item.year}})
DOI:{{item.doi}}Reactivity:{{item.species}}
Sample Type:{{item.organization}}
-
Q{{(FAQpage.currentPage - 1)*pageSize+index+1}}:{{item.name}}