MOCOS Polyclonal Antibody (E-AB-66270)

For research use only.
Verified Samples |
Verified Samples in WB: HepG2 |
Dilution | WB 1:500-1:2000 |
Isotype | IgG |
Host | Rabbit |
Reactivity | Human |
Applications | WB |
Clonality | Polyclonal |
Immunogen | Recombinant fusion protein of human MOCOS (NP_060417.2). |
Abbre | MOCOS |
Synonyms | HMCS, MCS, MOCOS, MOS, XAN2 |
Swissprot | |
Calculated MW | 98 kDa |
Observed MW |
98 kDa
Western blotting is a method for detecting a certain protein in a complex sample based on the specific binding of antigen and antibody. Different proteins can be divided into bands based on different mobility rates. The mobility is affected by many factors, which may cause the observed band size to be inconsistent with the expected size. The common factors include: 1. Post-translational modifications: For example, modifications such as glycosylation, phosphorylation, methylation, and acetylation will increase the molecular weight of the protein. 2. Splicing variants: Different expression patterns of various mRNA splicing bodies may produce proteins of different sizes. 3. Post-translational cleavage: Many proteins are first synthesized into precursor proteins and then cleaved to form active forms, such as COL1A1. 4. Relative charge: the composition of amino acids (the proportion of charged amino acids and uncharged amino acids). 5. Formation of multimers: For example, in protein dimer, strong interactions between proteins can cause the bands to be larger. However, the use of reducing conditions can usually avoid the formation of multimers. If a protein in a sample has different modified forms at the same time, multiple bands may be detected on the membrane. |
Concentration | 1 mg/mL |
Buffer | Phosphate buffered solution, pH 7.4, containing 0.05% stabilizer and 50% glycerol. |
Purification Method | Affinity purification |
Conjugation | Unconjugated |
Storage | Store at -20°C Valid for 12 months. Avoid freeze / thaw cycles. |
Shipping | The product is shipped with ice pack,upon receipt,store it immediately at the temperature recommended. |
background | This gene encodes an enzyme that sulfurates the molybdenum cofactor which is required for activation of the xanthine dehydrogenase (XDH) and aldehyde oxidase (AO) enzymes. XDH catalyzes the conversion of hypoxanthine to uric acid via xanthine, as well as the conversion of allopurinol to oxypurinol, and pyrazinamide to 5-hydroxy pyrazinamide. Mutations in this gene cause the metabolic disorder classical xanthinuria type II which is characterized by the loss of XDH/XO and AO enzyme activity, decreased levels of uric acid in the urine, increased levels of xanthine and hypoxanthine in the serum and urine, formation of xanthine stones in the urinary tract, and myositis due to tissue deposition of xanthine. |
Other Clones
{{antibodyDetailsPage.numTotal}} Results
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
Other Formats
{{formatDetailsPage.numTotal}} Results
Unconjugated
-
{{item.title}}
Citations ({{item.publications_count}}) Manual MSDS
Cat.No.:{{item.cat}}
{{index}} {{goods_show_value}}
-
IF:{{item.impact}}
Journal:{{item.journal}} ({{item.year}})
DOI:{{item.doi}}Reactivity:{{item.species}}
Sample Type:{{item.organization}}
-
Q{{(FAQpage.currentPage - 1)*pageSize+index+1}}:{{item.name}}